Final Exam - Group Theory (WIGT-07)

Monday January 21, 2019, 9:00h-12.00h
University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. Your grade for this exam is $(P+10) / 10$, where P is the number of points for this exam.

Problem 1 (15 points)

a) Give the definition of a homomorphism of groups

Solution: Let $\left(G_{1}, \cdot, e_{1}\right)$ and $\left(G_{2}, *, e_{2}\right)$ be groups. A homomorphism from G_{1} to G_{2} is a map $f: G_{1} \rightarrow G_{2}$ satisfying $f(x \cdot y)=f(x) * f(y)$ for all $x, y \in G_{1}$. (5 points)
b) Write down the structure theorem for finitely generated abelian groups.

Solution: For any finitely generated abelian group there exist a unique integer $r \geq 0$ and a unique (possibly empty) finite sequence $\left(d_{1}, \ldots, d_{m}\right)$ of integers $d_{i}>1$ satisfying $d_{m}\left|d_{m-1}\right| \ldots \mid d_{1}$, such that

$$
A \cong \mathbb{Z}^{r} \times \mathbb{Z} / d_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / d_{m} \mathbb{Z}
$$

(5 points)
c) Give the definition of the conjugacy class of an element of a group.

Solution: Let G be a group. The conjugacy class of $x \in G$ is

$$
C_{x}=\left\{y \in G \mid \text { there exists } a \in G \text { with } a x a^{-1}=y\right\} .
$$

(5 points)

Problem 2 (15 points)

Let $\tau=(15873)(24736)(167493) \in S_{9}$.
a) Compute the order of τ.

Solution: We compute the decomposition of τ into disjoint cycles and find $\tau=(12496) \circ$ (3587) (3 points). Hence $\operatorname{ord}(\tau)=\operatorname{lcm}(5,4)=20$ (1 point), because the order of a product of disjoint cycles is the least common multiple of the lengths of the cycles. (1 point) (5 points in total)
b) Compute the sign of τ.

Solution: By multiplicativity of the sign or by using the formula for the sign of a product of cycles (1 point), we find it is $(-1)^{5-1+5-1+6-1}=-1$ (using the definition of τ) or $(-1)^{5-1+4-1}=-1$ (using the decomposition into disjoint cycles). (2 points) (3 points in total)
c) Find the number of elements of the conjugacy class of τ.

Solution: The conjugacy class of a permutation is determined completely by the decomposition into disjoint cycles, so the desired number of elements is the number of $\sigma=$ $\left(i_{1} i_{2} i_{3} i_{4} i_{5}\right) \circ\left(j_{1} j_{2} j_{3} j_{4}\right) \in S_{9}$, where the two cycles are disjoint. (2 points) The number of k-cycles in S_{n} is $\frac{n!}{k(n-k)!}\left(1\right.$ point). Hence there are $\frac{9!}{5(9-5)!}=9 \cdot 8 \cdot 7 \cdot 6$ choices for $\left(i_{1} i_{2} i_{3} i_{4} i_{5}\right)$ (2 points). After these are fixed, there are $4!/ 4=6$ choices for $\left(k_{1} k_{2} k_{3} k_{4}\right)$. (1 point) Therefore the conjugacy class of τ contains $9 \cdot 8 \cdot 7 \cdot 6^{2}=18144$ elements (1 point). (7 points in total)

Problem 3 (18 points)

Let G and G^{\prime} be groups and let $f: G \rightarrow G^{\prime}$ be a homomorphism.
(a) Show that if $H^{\prime} \leq G^{\prime}$ is a normal subgroup, then the preimage

$$
f^{-1}\left(H^{\prime}\right)=\left\{x \in G: f(x) \in H^{\prime}\right\}
$$

is a normal subgroup of G (you do not have to show that $f^{-1}\left(H^{\prime}\right)$ is a subgroup of G).
Solution: Let $H:=f^{-1}\left(H^{\prime}\right)$. Let $h \in H$, then $f(h) \in H^{\prime}$ by definition of H (1 point). For $a \in G$ we have $f\left(a h a^{-1}\right)=f(a) f(h) f\left(a^{-1}\right)$ (1 point) since f is a homomorphism (0.5 points). But H^{\prime} is normal, therefore $f(a) f(h) f\left(a^{-1}\right) \in H^{\prime}$ (1 point), which implies that $a h a^{-1} \in H$ (0.5 points). This proves that H is normal. (1 point) (5 points in total)
(b) Show that if f is surjective and if $H \leq G$ is a normal subgroup, then the image $f(H)$ is a normal subgroup of G^{\prime} (you do not have to show that $f(H)$ is a subgroup of G^{\prime}).
Solution: Let $H^{\prime}:=f(H)$. Let $h^{\prime} \in H^{\prime}$, then there is some $h \in H$ such that $h^{\prime}=f(h)$ by definition of H^{\prime} (1 point). As f is surjective, every $a^{\prime} \in G^{\prime}$ has a preimage $a \in G$ under f (1 point). Therefore $a^{\prime} h^{\prime} a^{\prime-1}=f(a) f(h) f(a)^{-1}=f(a) f(h) f\left(a^{-1}\right)=f\left(a h a^{-1}\right)(1.5$ points) because f is a homomorphism (0.5 points). But H is normal, so $a h a^{-1} \in H$ (1 point), and we conclude $f\left(a h a^{-1}\right) \in H^{\prime}$ and $a^{\prime} h^{\prime} a^{\prime-1} \in H^{\prime}$ (1 point), which implies that H^{\prime} is normal. (1 point) (7 points in total)
(c) Find an example of groups G and G^{\prime} such that there is a homomorphism $f: G \rightarrow G^{\prime}$ and a normal subgroup H of G with the property that $f(H)$ is not a normal subgroup of G^{\prime}.
Solution: Let $G^{\prime}=S_{3}$ and $H^{\prime}=\langle(12)\rangle=\{(1),(12)\} \leq G^{\prime}$. (1 point) Then H^{\prime} is not a normal subgroup of G^{\prime}. To see this, take for instance $\tau=(23)=\tau^{-1}$, then $\tau \circ(12) \circ \tau^{-1}=$ (13) $\notin H^{\prime}$. (2 points) On the other hand, H^{\prime} is a group in its own right. So we take $G:=H^{\prime}$ and we let H be the subgroup $H:=G$ of G. (1 point) Then H is trivially normal in G, (1 point) but $f(H)=H^{\prime}$ is not normal in G^{\prime} if we take for f the inclusion homomorphism, i.e. $f((1))=(1)$ and $f((12))=(12)$. (1 point) This example can be generalized in an obvious way. (6 points in total)

Problem 4 (10 points)

Let G be a group of order 56. Show that G is not simple.
Solution: We have $56=2^{3} \cdot 7$. (1 point) For a prime $p \mid 56$, let $n_{p}=n_{p}(G)$ be the number of Sylow- p groups in G. If we find $n_{p}=1$ for some p, then we know that the unique Sylow p-group in G is normal and, since it has order p, it is not G or $\{e\}$, so G is not simple. (2 points)

By Sylow's theorem $n_{7} \equiv 1(\bmod 7)$ and $n_{7} \mid 8$, so $n_{7} \in\{1,8\}$ (1 point). Suppose $n_{7}=8$; it suffices to show that $n_{2}=1$ (1 point). If H, H^{\prime} are distinct 7 -Sylow groups in G, then their intersection consists only of the unit element e (for instance, since their intersection is a subgroup of H, so by Lagrange it has order dividing 7). Hence there are $8 \cdot(7-1)=48$ elements of order 7 in G, as every element $\neq e$ of a 7 -Sylow group has order 7. (3 points) This implies $n_{2}=1$, because $n_{2} \geq 1$ and every Sylow- 2 group consists of precisely 8 elements, none of which are of order 7. (2 points)

Problem 5 (12 points)

Let G be the abelian group $\left(\mathbb{R}^{3},+, 0\right)$ and let $L=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in G: x_{1}+x_{2}=0=x_{3}\right\}$.
(a) Show that L is a normal subgroup of G.

Solution:

In order to use the subgroup criterion (1 point), we check that
(H1) the unit element 0 is in G, which is obvious (1 point)
(H2) if $x, y \in G$, we have $z:=x+y \in G$, since

$$
z_{1}+z_{2}=x_{1}+y_{1}+x_{2}+y_{2}=x_{1}+x_{2}+y_{1}+y_{2}=0=x_{3}+y_{3}=z_{3} ;(1 \text { point })
$$

(H3) if $x \in G$ we have $w:=-x \in G$, since $w_{1}+w_{2}=-\left(x_{1}+x_{2}\right)=0=-x_{3}=w_{3}$ (1 point).
Any subgroup of the abelian group G must be normal itself (1 point).
A simpler solution is to use that L is the kernel of the homomorphism ϕ in (b), since the kernel of a homomorphism is always a normal subgroup (5 points).
(b) Show that $G / L \cong \mathbb{R}^{2}$.

Solution: Consider the map

$$
\phi: G \rightarrow \mathbb{R}^{2} ; \quad x:=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+x_{2}, x_{3}\right) .
$$

Then ϕ is a homomorphism, since for $x, y \in G$ we have

$$
\begin{aligned}
\phi(x+y) & =\left(x_{1}+y_{1}+x_{2}+y_{2}, x_{3}+y_{3}\right) \\
& =\left(x_{1}+x_{2}, x_{3}\right)+\left(y_{1}+y_{2}, y_{3}\right) \\
& =\phi(x)+\phi(y)
\end{aligned}
$$

(2 points) It is clear that $\operatorname{ker} \phi=L$ (1 point). The homomorphism ϕ is surjective, because if $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$, then we have $\phi(x)=\left(z_{1}+0, z_{2}\right)=z$ for $x=\left(z_{1}, 0, z_{2}\right) \in G$. (2 points) Therefore the homomorphism theorem implies

$$
G / L=G / \operatorname{ker} \phi \cong \phi(G)=\mathbb{R}^{2} .
$$

(2 points)

Problem 6 (20 points)

Determine the rank and the elementary divisors of each of the following groups:
a) $\mathbb{Z}^{3} \times 15 \mathbb{Z} \times(\mathbb{Z} / 5 \mathbb{Z})^{\times} \times \mathbb{Z} / 14 \mathbb{Z}$.

Solution: We have $\mathbb{Z} \cong 15 \mathbb{Z}$ (1 point) via the isomorphism $x \mapsto 15 x$ (0.5 points). Since $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \times \mathbb{Z} / 14 \mathbb{Z}$ is finite, this shows that the rank is 4 (1.5 points).
The group $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$has order 4 , so every element has order 1,2 or 4 . Since $\overline{2}^{2}=\overline{4} \neq \overline{1}$, the order of $\overline{2}$ must be 4 , which implies $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cong \mathbb{Z} / 4 \mathbb{Z}$ (2 points). By the Chinese remainder theorem,

$$
\begin{aligned}
(\mathbb{Z} / 5 \mathbb{Z})^{\times} \times \mathbb{Z} / 14 \mathbb{Z} & \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 14 \mathbb{Z} \\
& \cong \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
& \cong \mathbb{Z} / 28 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \quad(2 \text { points })
\end{aligned}
$$

so the elementary divisors are 2 and 28 (1 point). (8 points in total)
b) \mathbb{Z}^{3} / H, where $H \leq \mathbb{Z}^{3}$ is generated by $(3,1,2),(-4,6,2),(-1,7,4)$.

Solution: Let A denote the matrix with rows equal to the given generators of H. We apply the algorithm from the lecture to transform A into a diagonal matrix whose diagonal entries are the elementary divisors (and possibly 0's and 1's) (2 points):

$$
\left(\begin{array}{ccc}
3 & 1 & 2 \\
-4 & 6 & 2 \\
-1 & 7 & 4
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 7 & 4 \\
-4 & 6 & 2 \\
3 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 7 & 4 \\
0 & -22 & -14 \\
0 & 22 & 14
\end{array}\right) \sim\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -22 & -14 \\
0 & 22 & 14
\end{array}\right)(2 \text { points })
$$

We continue with the bottom right 2×2 matrix (1 point):

$$
\begin{aligned}
\left(\begin{array}{cc}
-22 & -14 \\
22 & 14
\end{array}\right) & \sim\left(\begin{array}{cc}
-14 & -22 \\
14 & 22
\end{array}\right) \sim\left(\begin{array}{cc}
-14 & -22 \\
0 & 0
\end{array}\right) \sim\left(\begin{array}{cc}
-14 & 6 \\
0 & 0
\end{array}\right) \sim\left(\begin{array}{cc}
6 & -14 \\
0 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{cc}
6 & -2 \\
0 & 0
\end{array}\right) \sim\left(\begin{array}{cc}
-2 & 6 \\
0 & 0
\end{array}\right) \sim\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right)(2 \text { points })
\end{aligned}
$$

Hence the desired matrix is

$$
\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad(1 \text { point })
$$

It follows that $\mathbb{Z}^{3} / H \cong \mathbb{Z} \times \mathbb{Z} / 1 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (2 points), so the rank is 1 (1 point) and the only elementary divisor is 2 (1 point) (12 points in total).

End of test (90 points)

